Linear Algebra I

18/12/2017, Monday, 15:00-17:00
$1 \quad(2+7+3+5+3=20 \mathrm{pts})$
Linear systems of equations

Consider the following linear system of equations in the unknowns x, y, and z :

$$
\begin{aligned}
& a x+y+z=1 \\
& x+a y+z=1 \\
& x+y+a z=1
\end{aligned}
$$

(a) Write down the augmented matrix.
(b) By performing elementary row operations, put the augmented matrix into row echelon form.
(c) Determine all values of a so that the system is inconsistent.
(d) Determine all values of a so that the system is consistent and find the solution set for such values of a.
(e) Determine all values of a so that the system has a unique solution.

REQUIRED KNOWLEDGE: Gauss-elimination, row operations, row echelon form, notions of lead/free variables.

Solution:

1a: Augmented matrix is given by:

$$
\left[\begin{array}{lll|l}
a & 1 & 1 & 1 \\
1 & a & 1 & 1 \\
1 & 1 & a & 1
\end{array}\right]
$$

1b:
$\left[\begin{array}{lll|l}a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1\end{array}\right] \xrightarrow{(1)=(2)}=\stackrel{(1)}{2}\left[\begin{array}{lll|l}1 & a & 1 & 1 \\ a & 1 & 1 & 1 \\ 1 & 1 & a & 1\end{array}\right] \xrightarrow{(3)=(2)-a \cdot(1)}\left[\begin{array}{ccc|c}1 & a & 1 & 1 \\ 0 & 1-a^{2} & 1-a & 1-a \\ 0 & 1-a & a-1 & 0\end{array}\right]$
We can distinguish two cases depending on the value of a :
Case 1: $a=1$
In this case, the matrix we obtained in the previous step is already in row echelon form:

$$
\left[\begin{array}{ccc|c}
1 & a & 1 & 1 \\
0 & 1-a^{2} & 1-a & 1-a \\
0 & 1-a & a-1 & 0
\end{array}\right]=\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Case 2: $a \neq 1$

$$
\left[\begin{array}{ccc|c}
1 & a & 1 & 1 \\
0 & 1-a^{2} & 1-a & 1-a \\
0 & 1-a & a-1 & 0
\end{array}\right] \xrightarrow{(2)=(3)}\left[\begin{array}{ccc|c}
1 & a & 1 & 1 \\
0 & 1-a & a-1 & 0 \\
0 & 1-a^{2} & 1-a & 1-a
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & a & 1 & 1 \\
0 & 1-a & a-1 & 0 \\
0 & 1-a^{2} & 1-a & 1-a
\end{array}\right] \xrightarrow{(2)=\frac{1}{1-a} \cdot(2)}\left[\begin{array}{ccc|c}
1 & a & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 1-a^{2} & 1-a & 1-a
\end{array}\right]} \\
{\left[\begin{array}{ccc|c}
1 & a & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 1-a^{2} & 1-a & 1-a
\end{array}\right] \xrightarrow{(3)=(3)+\left(a^{2}-1\right) \cdot(2)}\left[\begin{array}{cccc}
1 & a & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 2-a-a^{2} & 1-a
\end{array}\right]}
\end{gathered}
$$

Note that $a^{2}+a-2=0$ if and only if $a=1$ or $a=-2$. Since we have already assumed that $a \neq 1$. The term $2-a-a^{2}$ can be zero only if $a=-2$. This leads to two subcases.

Case 2.1: $a \neq 1$ and $a=-2$

In this case, we have

$$
\left[\begin{array}{ccc|c}
1 & a & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 2-a-a^{2} & 1-a
\end{array}\right] \xrightarrow{(3)=\frac{1}{3} \cdot(3)}\left[\begin{array}{ccc|c}
1 & a & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Case 2.2: $a \neq 1$ and $a \neq-2$

$$
\left[\begin{array}{ccc|c}
1 & a & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 2-a-a^{2} & 1-a
\end{array}\right] \xrightarrow{(3)=\frac{1}{2-a-a^{2}} \cdot(3)}\left[\begin{array}{ccc|c}
1 & a & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & \frac{1}{a+2}
\end{array}\right]
$$

1c: We have obtained the following row echelon forms:

$$
\begin{array}{cl}
{\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} & \text { if } a=1 \\
{\left[\begin{array}{ccc|c}
1 & a & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} & \text { if } a \neq 1 \text { and } a=-2 \\
{\left[\begin{array}{ccc|c}
1 & a & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & \frac{1}{a+2}
\end{array}\right]} & \text { if } a \neq 1 \text { and } a \neq-2 .
\end{array}
$$

Therefore, we see that the system is inconsistent if and only if $a \neq 1$ and $a=-2$.
$\mathbf{1 d}$: The system is consistent if and only if $(a=1)$ or ($a \neq 1$ and $a \neq-2$).
If $a=1$, then x is the lead variable and y, z are free variables. This leads to the general solution:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1-y-z \\
y \\
z
\end{array}\right]
$$

If $a \neq 1$ and $a \neq-2$, then x, y, z are all lead variables. This leads to the general solution:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{a+2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

1e: From the previous subproblem, we see that the system has a unique solution if and only if $a \neq 1$ and $a \neq-2$.

Find all values of a, b, c, d, e, and f such that the matrix

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
a & b & b & b \\
a & c & d & d \\
a & c & e & f
\end{array}\right]
$$

is singular.

REQUIRED KNOWLEDGE: Determinants, nonsingular matrices.

SOLUTION:

First we compute the determinant. By applying row operations and cofactor expansions, we obtain:

$$
\begin{aligned}
& \left|\begin{array}{llll}
1 & 1 & 1 & 1 \\
a & b & b & b \\
a & c & d & d \\
a & c & e & f
\end{array}\right|=\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & b-a & b-a & b-a \\
0 & c-a & d-a & d-a \\
0 & c-a & e-a & f-a
\end{array}\right| \\
& =\left|\begin{array}{ccc}
b-a & b-a & b-a \\
c-a & d-a & d-a \\
c-a & e-a & f-a
\end{array}\right| \\
& \left\{\begin{array}{c}
\text { cofactor expansion } \\
\text { with respect to } \\
\text { column (1) }
\end{array}\right\} \\
& =(b-a)\left|\begin{array}{ccc}
1 & 1 & 1 \\
c-a & d-a & d-a \\
c-a & e-a & f-a
\end{array}\right|=(b-a)\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & d-c & d-c \\
0 & e-c & f-c
\end{array}\right| \\
& =(b-a)\left|\begin{array}{ll}
d-c & d-c \\
e-c & f-c
\end{array}\right| \\
& =(b-a)(d-c)\left|\begin{array}{cc}
1 & 1 \\
e-c & f-c
\end{array}\right| \\
& =(b-a)(d-c)(f-c-e+c)=(b-a)(d-c)(f-e) . \\
& \left\{\begin{array}{c}
\text { cofactor expansion } \\
\text { with respect to } \\
\text { column (1) }
\end{array}\right\} \\
& =(b-a)(d-c)\left|\begin{array}{cc}
1 & 1 \\
e-c & f-c
\end{array}\right| \\
& =(b-a)(d-c)(f-c-e+c)=(b-a)(d-c)(f-e) .
\end{aligned}
$$

Let A and B be $n \times n$ matrices. Suppose that A is nonsingular.
(a) Show that the matrix

$$
M=\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]
$$

is nonsingular if and only if the matrix $A-B A^{-1} B$ is nonsingular.
(b) Suppose that $A-B A^{-1} B$ is nonsingular and find the inverse of M.

Required Knowledge: Partitioned matrices, nonsingular matrices, and inverse.

Solution:

3a: 'only if': Suppose that the matrix

$$
M=\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]
$$

is nonsingular. Let $x \in \mathbb{R}^{n}$ be such that $\left(A-B A^{-1} B\right) x=0$. It is enough to show that $x=0_{n}$. Note that

$$
M\left[\begin{array}{c}
-A^{-1} B x \\
x
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\left[\begin{array}{c}
-A^{-1} B x \\
x
\end{array}\right]=\left[\begin{array}{l}
-A A^{-1} B x+B x \\
-B A^{-1} B x+A x
\end{array}\right]=\left[\begin{array}{l}
0_{n} \\
0_{n}
\end{array}\right] .
$$

Since M is nonsingular, we see that $x=0$. Hence, $A-B A^{-1} B$ is nonsingular.
'if': Suppose that $A-B A^{-1} B$ is nonsingular. Let $x, y \in \mathbb{R}^{n}$ be such that

$$
0_{2 n}=M\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
A x+B y \\
B x+A y
\end{array}\right] .
$$

It is enough to show that $x=y=0_{n}$. As such, we have

$$
\begin{align*}
& A x+B y=0_{n} \tag{1}\\
& B x+A y=0_{n} \tag{2}
\end{align*}
$$

Since A is nonsingular, it follows from (1) that $x=-A^{-1} B y$. Then, (2) implies that ($A-$ $\left.B A^{-1} B\right) x=0_{n}$. Since $A-B A^{-1} B$, we see that $x=0_{n}$. Then, (2) yields that $A y=0_{n}$. Since A is nonsingular, we get $y=0_{n}$. Consequently, M is nonsingular.

3b: Let U, V, W, X be $n \times n$ matrices such that

$$
M\left[\begin{array}{ll}
U & V \\
W & X
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\left[\begin{array}{cc}
U & V \\
W & X
\end{array}\right]=\left[\begin{array}{cc}
I_{n} & 0_{n, n} \\
0_{n, n} & I_{n}
\end{array}\right] .
$$

Therefore, we have

$$
\begin{align*}
A U+B W & =I_{n} \tag{3}\\
A V+B X & =0_{n, n} \tag{4}\\
B U+A W & =0_{n, n} \tag{5}\\
B V+A X & =I_{n} . \tag{6}
\end{align*}
$$

Since A is nonsingular, we can solve V from (4):

$$
V=-A^{-1} B X
$$

Together with (6), this implies that

$$
X=\left(A-B A^{-1} B\right)^{-1}
$$

in view of nonsingularity of $A-B A^{-1} B$ and thus

$$
V=-A^{-1} B\left(A-B A^{-1} B\right)^{-1}
$$

Similarly, we can solve W from (5) and use it in (3) in order to obtain

$$
W=-A^{-1} B\left(A-B A^{-1} B\right)^{-1} \quad \text { and } \quad U=\left(A-B A^{-1} B\right)^{-1}
$$

Therefore, we get

$$
M^{-1}=\left[\begin{array}{cc}
\left(A-B A^{-1} B\right)^{-1} & -A^{-1} B\left(A-B A^{-1} B\right)^{-1} \\
-A^{-1} B\left(A-B A^{-1} B\right)^{-1} & \left(A-B A^{-1} B\right)^{-1}
\end{array}\right]
$$

An alternative approach would be solving U and X from (3) and (6). This results in

$$
\begin{equation*}
U=A^{-1}\left(I_{n}-B W\right) \tag{7}
\end{equation*}
$$

in view of nonsingularity of A. Substituting (7) in (5) yields $\left(A-B A^{-1} B\right) W=-B A^{-1}$. Since $A-B A^{-1} B$ is nonsingular, we get

$$
\begin{equation*}
W=-\left(A-B A^{-1} B\right)^{-1} B A^{-1} \tag{8}
\end{equation*}
$$

As such, (7) results in

$$
U=A^{-1}+A^{-1} B\left(A-B A^{-1} B\right)^{-1} B A^{-1}
$$

Similarly, we can solve X from (6) and use (5) to obtain

$$
V=-\left(A-B A^{-1} B\right)^{-1} B A^{-1}
$$

and

$$
X=A^{-1}+A^{-1} B\left(A-B A^{-1} B\right)^{-1} B A^{-1}
$$

Hence, we obtain

$$
M^{-1}=\left[\begin{array}{cc}
A^{-1}+A^{-1} B\left(A-B A^{-1} B\right)^{-1} B A^{-1} & -\left(A-B A^{-1} B\right)^{-1} B A^{-1} \\
-\left(A-B A^{-1} B\right)^{-1} B A^{-1} & A^{-1}+A^{-1} B\left(A-B A^{-1} B\right)^{-1} B A^{-1}
\end{array}\right]
$$

(a) Let $E=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right)$ be an ordered basis for the vector space V.
(i) Show that the vectors $\boldsymbol{v}_{1}+\boldsymbol{v}_{2}, \boldsymbol{v}_{2}+\boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{n-1}+\boldsymbol{v}_{n}, \boldsymbol{v}_{n}$ form a basis for V.
(ii) Find the transition matrix corresponding to the change of basis from $E=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right)$ to $F=\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}, \boldsymbol{v}_{2}+\boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{n-1}+\boldsymbol{v}_{n}, \boldsymbol{v}_{n}\right)$.
(b) Consider the vector space P_{4}. Let

$$
S=\left\{p \in P_{4} \mid p(1)=0 \text { and } p^{\prime}(1)=0\right\}
$$

where $p^{\prime}(x)$ denotes the derivative of $p(x)$.
(i) Show that S is a subspace.
(ii) Find a basis for S and determine its dimension.

Required Knowledge: Subspaces, basis, dimension, change of basis.

Solution:

$\mathbf{4 a}(\mathbf{i})$: The vectors $\boldsymbol{v}_{1}+\boldsymbol{v}_{2}, \boldsymbol{v}_{2}+\boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{n-1}+\boldsymbol{v}_{n}, \boldsymbol{v}_{n}$ form a basis for V if they span V and are linearly independent. For the former, let $\boldsymbol{x} \in V$. Since $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ form a basis, there exist scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that

$$
\begin{equation*}
\boldsymbol{x}=\alpha_{1} \boldsymbol{v}_{1}+\alpha_{2} \boldsymbol{v}_{2}+\cdots+\alpha_{n} \boldsymbol{v}_{n} . \tag{9}
\end{equation*}
$$

We need to show that there exist scalars $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ such that

$$
\boldsymbol{x}=\beta_{1}\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right)+\beta_{2}\left(\boldsymbol{v}_{2}+\boldsymbol{v}_{3}\right)+\cdots+\beta_{n-1}\left(\boldsymbol{v}_{n-1}+\boldsymbol{v}_{n}\right)+\beta_{n} \boldsymbol{v}_{n} .
$$

This would mean that

$$
\begin{equation*}
\boldsymbol{x}=\beta_{1} \boldsymbol{v}_{1}+\left(\beta_{1}+\beta_{2}\right) \boldsymbol{v}_{2}+\left(\beta_{2}+\beta_{3}\right) \boldsymbol{v}_{3}+\cdots+\left(\beta_{n-1}+\beta_{n}\right) \boldsymbol{v}_{n} . \tag{10}
\end{equation*}
$$

By comparing this with (9), we see that

$$
\begin{aligned}
\beta_{1} & =\alpha_{1} \\
\beta_{2} & =\alpha_{2}-\alpha_{1} \\
\beta_{3} & =\alpha_{3}-\alpha_{2}+\alpha_{1} \\
\quad & \vdots \\
\beta_{n} & =\alpha_{n}-\alpha_{n-1}+-\cdots+(-1)^{(n+1)} \alpha_{1} .
\end{aligned}
$$

Therefore, the vectors $\boldsymbol{v}_{1}+\boldsymbol{v}_{2}, \boldsymbol{v}_{2}+\boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{n-1}+\boldsymbol{v}_{n}, \boldsymbol{v}_{n}$ span V.
To show that they are linearly independent, let $c_{1}, c_{2}, \ldots, c_{n}$ be scalars such that

$$
c_{1}\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right)+c_{2}\left(\boldsymbol{v}_{2}+\boldsymbol{v}_{3}\right)+\cdots+c_{n-1}\left(\boldsymbol{v}_{n-1}+\boldsymbol{v}_{n}\right)+c_{n} \boldsymbol{v}_{n}=\mathbf{0} .
$$

Equivalently, we have

$$
c_{1} \boldsymbol{v}_{1}+\left(c_{1}+c_{2}\right) \boldsymbol{v}_{2}+\left(c_{2}+c_{3}\right) \boldsymbol{v}_{3}+\cdots+\left(c_{n-1}+c_{n}\right) \boldsymbol{v}_{n}=\mathbf{0}
$$

It follows from linear independence of the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ that

$$
\begin{aligned}
& c_{1}=0 \\
& c_{1}+c_{2}=0 \\
& \vdots \\
& c_{n-1}+c_{n}=0 .
\end{aligned}
$$

As such, we see that $c_{1}=c_{2}=\cdots=c_{n}=0$. Therefore, the vectors $\boldsymbol{v}_{1}+\boldsymbol{v}_{2}, \boldsymbol{v}_{2}+\boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{n-1}+$ $\boldsymbol{v}_{n}, \boldsymbol{v}_{n}$ are linearly independent.

4a(ii):

We begin with expressing the basis vectors in E as linear combinations of those in F :

$$
\begin{aligned}
\boldsymbol{v}_{1} & =+1 \cdot\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right)-1 \cdot\left(\boldsymbol{v}_{2}+\boldsymbol{v}_{3}\right)+1 \cdot\left(\boldsymbol{v}_{3}+\boldsymbol{v}_{4}\right)+\cdots+(-1)^{n} \cdot\left(\boldsymbol{v}_{n-1}+\boldsymbol{v}_{n}\right)+(-1)^{n+1} \cdot \boldsymbol{v}_{n} \\
\boldsymbol{v}_{2} & =+0 \cdot\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right)+1 \cdot\left(\boldsymbol{v}_{2}+\boldsymbol{v}_{3}\right)-1 \cdot\left(\boldsymbol{v}_{3}+\boldsymbol{v}_{4}\right)+\cdots+(-1)^{n-1} \cdot\left(\boldsymbol{v}_{n-1}+\boldsymbol{v}_{n}\right)+(-1)^{n} \cdot \boldsymbol{v}_{n} \\
& \vdots \\
\boldsymbol{v}_{n-1} & =+0 \cdot\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right)+0 \cdot\left(\boldsymbol{v}_{2}+\boldsymbol{v}_{3}\right)+0 \cdot\left(\boldsymbol{v}_{3}+\boldsymbol{v}_{4}\right)+\cdots+1 \cdot\left(\boldsymbol{v}_{n-1}+\boldsymbol{v}_{n}\right)-1 \cdot \boldsymbol{v}_{n} \\
\boldsymbol{v}_{n} & =+0 \cdot\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right)+0 \cdot\left(\boldsymbol{v}_{2}+\boldsymbol{v}_{3}\right)+0 \cdot\left(\boldsymbol{v}_{3}+\boldsymbol{v}_{4}\right)+\cdots+0 \cdot\left(\boldsymbol{v}_{n-1}+\boldsymbol{v}_{n}\right)+1 \cdot \boldsymbol{v}_{n} .
\end{aligned}
$$

Therefore, the transition matrix is given by:

$$
T=\left[\begin{array}{ccccccc}
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
-1 & 1 & 0 & \cdots & 0 & 0 & 0 \\
1 & -1 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
(-1)^{n} & (-1)^{n-1} & (-1)^{n-2} & \cdots & -1 & 1 & 0 \\
(-1)^{n+1} & (-1)^{n} & (-1)^{n-1} & \cdots & 1 & -1 & 1
\end{array}\right]
$$

$\mathbf{4 b}(\mathbf{i}):$ First, we note that the zero polynomial belongs to S. As such, S_{2} is nonempty. Let α be a scalar and $p \in S$. Note that

$$
(\alpha p)(1)=\alpha p(1)=0 \text { and }(\alpha p)^{\prime}(1)=\alpha p^{\prime}(1)=0
$$

This means that $\alpha p \in S$.
Now, let $p, q \in S$. Note that

$$
(p+q)(1)=p(1)+q(1)=0 \text { and }(p+q)^{\prime}(1)=p^{\prime}(1)+q^{\prime}(1)=0
$$

As such, $p+q \in S$.
Consequently, S is a subspace.
$\mathbf{4 b}(\mathbf{i i}):$ Let $p \in P_{4}$. Note that if $p(x)=a x^{3}+b x^{2}+c x+d$ then $p^{\prime}(x)=3 a x^{2}+2 b x+c$. Therefore, $p \in S$ if and only if

$$
a+b+c+d=0 \quad \text { and } \quad 3 a+2 b+c=0
$$

Solving this linear system, we see that c, d are free variables and a, b are lead variables given by

$$
a=c+2 d \quad \text { and } \quad b=-2 c-3 d
$$

Thus, $p \in S$ if and only if

$$
p(x)=(c+2 d) x^{3}+(-2 c-3 d) x^{2}+c x+d=c\left(x^{3}-2 x^{2}+x\right)+d\left(2 x^{3}-3 x^{2}+1\right)
$$

for some scalars c and d. This means that the vectors $x^{3}-2 x^{2}+x, 2 x^{3}-3 x^{2}+1$ span S. Therefore, they would form a basis for S if they are linearly independent. To verify linear independence, let α and β be such that

$$
\alpha\left(x^{3}-2 x^{2}+x\right)+\beta\left(2 x^{3}-3 x^{2}+1\right)=0
$$

This would mean that

$$
\alpha+2 \beta=0, \quad-2 \alpha-3 \beta=0, \quad \alpha=0 \quad \text { and } \quad \beta=0
$$

Clearly, the only solution is $\alpha=\beta=0$. As such, the vectors $x^{3}-2 x^{2}+x, 2 x^{3}-3 x^{2}+1$ are linearly independent and thus form a basis for S.

The dimension of a space is the cardinality of its basis. Therefore, $\operatorname{dim}(S)=2$.

