
Linear Algebra I

18/12/2017, Monday, 15:00 – 17:00

 (2 + 7 + 3 + 5 + 3 = 20 pts) Linear systems of equations

Consider the following linear system of equations in the unknowns x, y, and z:

ax+ y + z = 1

x+ ay + z = 1

x+ y + az = 1.

(a) Write down the augmented matrix.

(b) By performing elementary row operations, put the augmented matrix into row echelon form.

(c) Determine all values of a so that the system is inconsistent.

(d) Determine all values of a so that the system is consistent and find the solution set for such
values of a.

(e) Determine all values of a so that the system has a unique solution.

Required Knowledge: Gauss-elimination, row operations, row echelon form, no-
tions of lead/free variables.

Solution:

1a: Augmented matrix is given by:  a 1 1 1
1 a 1 1
1 1 a 1

 .
1b:

 a 1 1 1
1 a 1 1
1 1 a 1


1 = 2
2 = 1
−−−−−−→

 1 a 1 1
a 1 1 1
1 1 a 1


2 = 2 − a · 1

3 = 3 − 1
−−−−−−−−−−−−−→

 1 a 1 1
0 1− a2 1− a 1− a
0 1− a a− 1 0


We can distinguish two cases depending on the value of a:

Case 1: a = 1

In this case, the matrix we obtained in the previous step is already in row echelon form: 1 a 1 1
0 1− a2 1− a 1− a
0 1− a a− 1 0

 =

 1 1 1 1
0 0 0 0
0 0 0 0


Case 2: a 6= 1

 1 a 1 1
0 1− a2 1− a 1− a
0 1− a a− 1 0


2 = 3
3 = 2
−−−−−−→

 1 a 1 1
0 1− a a− 1 0
0 1− a2 1− a 1− a





 1 a 1 1
0 1− a a− 1 0
0 1− a2 1− a 1− a

 2 = 1
1−a · 2

−−−−−−−−−−−→

 1 a 1 1
0 1 −1 0
0 1− a2 1− a 1− a


 1 a 1 1

0 1 −1 0
0 1− a2 1− a 1− a

 3 = 3 + (a2 − 1) · 2
−−−−−−−−−−−−−−−−−−→

 1 a 1 1
0 1 −1 0
0 0 2− a− a2 1− a


Note that a2 + a− 2 = 0 if and only if a = 1 or a = −2. Since we have already assumed that

a 6= 1. The term 2− a− a2 can be zero only if a = −2. This leads to two subcases.

Case 2.1: a 6= 1 and a = −2

In this case, we have 1 a 1 1
0 1 −1 0
0 0 2− a− a2 1− a

 3 = 1
3 · 3

−−−−−−−−−→

 1 a 1 1
0 1 −1 0
0 0 0 1


Case 2.2: a 6= 1 and a 6= −2

 1 a 1 1
0 1 −1 0
0 0 2− a− a2 1− a

 3 = 1
2−a−a2 · 3

−−−−−−−−−−−−−→

 1 a 1 1
0 1 −1 0
0 0 1 1

a+2


1c: We have obtained the following row echelon forms: 1 1 1 1

0 0 0 0
0 0 0 0

 if a = 1

 1 a 1 1
0 1 −1 0
0 0 0 1

 if a 6= 1 and a = −2

 1 a 1 1
0 1 −1 0
0 0 1 1

a+2

 if a 6= 1 and a 6= −2.

Therefore, we see that the system is inconsistent if and only if a 6= 1 and a = −2.
1d: The system is consistent if and only if (a = 1) or (a 6= 1 and a 6= −2).

If a = 1, then x is the lead variable and y, z are free variables. This leads to the general
solution: xy

z

 =

1− y − z
y
z

 .
If a 6= 1 and a 6= −2, then x, y, z are all lead variables. This leads to the general solution:xy

z

 =
1

a+ 2

1
1
1

 .
1e: From the previous subproblem, we see that the system has a unique solution if and only if
a 6= 1 and a 6= −2.



 (20 pts) Determinants

Find all values of a, b, c, d, e, and f such that the matrix
1 1 1 1
a b b b
a c d d
a c e f


is singular.

Required Knowledge: Determinants, nonsingular matrices.

Solution:

First we compute the determinant. By applying row operations and cofactor expansions, we
obtain:∣∣∣∣∣∣∣∣

1 1 1 1
a b b b
a c d d
a c e f

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 1 1 1
0 b− a b− a b− a
0 c− a d− a d− a
0 c− a e− a f − a

∣∣∣∣∣∣∣∣


row operations
2 = 2 − a · 1
3 = 3 − a · 1
4 = 4 − a · 1


=

∣∣∣∣∣∣
b− a b− a b− a
c− a d− a d− a
c− a e− a f − a

∣∣∣∣∣∣


cofactor expansion
with respect to

column 1


= (b− a)

∣∣∣∣∣∣
1 1 1

c− a d− a d− a
c− a e− a f − a

∣∣∣∣∣∣ = (b− a)

∣∣∣∣∣∣
1 1 1
0 d− c d− c
0 e− c f − c

∣∣∣∣∣∣


row operations
2 = 2 − (c− a) · 1
3 = 3 − (c− a) · 1


= (b− a)

∣∣∣∣ d− c d− c
e− c f − c

∣∣∣∣


cofactor expansion
with respect to

column 1


= (b− a)(d− c)

∣∣∣∣ 1 1
e− c f − c

∣∣∣∣
= (b− a)(d− c)(f − c− e+ c) = (b− a)(d− c)(f − e).

A square matrix is singular if and only if its determinant is zero. Therefore, the matrix given
in this problem is singular if and only if a = b or c = d or e = f .



 (10 + 10 = 20 pts) Partitioned matrices

Let A and B be n× n matrices. Suppose that A is nonsingular.

(a) Show that the matrix

M =

[
A B
B A

]
is nonsingular if and only if the matrix A−BA−1B is nonsingular.

(b) Suppose that A−BA−1B is nonsingular and find the inverse of M .

Required Knowledge: Partitioned matrices, nonsingular matrices, and inverse.

Solution:

3a: ‘only if’: Suppose that the matrix

M =

[
A B
B A

]
is nonsingular. Let x ∈ Rn be such that (A − BA−1B)x = 0. It is enough to show that x = 0n.
Note that

M

[
−A−1Bx

x

]
=

[
A B
B A

] [
−A−1Bx

x

]
=

[
−AA−1Bx+Bx
−BA−1Bx+Ax

]
=

[
0n
0n

]
.

Since M is nonsingular, we see that x = 0. Hence, A−BA−1B is nonsingular.

‘if’: Suppose that A−BA−1B is nonsingular. Let x, y ∈ Rn be such that

02n = M

[
x
y

]
=

[
A B
B A

] [
x
y

]
=

[
Ax+By
Bx+Ay

]
.

It is enough to show that x = y = 0n. As such, we have

Ax+By = 0n (1)

Bx+Ay = 0n (2)

Since A is nonsingular, it follows from (1) that x = −A−1By. Then, (2) implies that (A −
BA−1B)x = 0n. Since A−BA−1B, we see that x = 0n. Then, (2) yields that Ay = 0n. Since A
is nonsingular, we get y = 0n. Consequently, M is nonsingular.

3b: Let U, V,W,X be n× n matrices such that

M

[
U V
W X

]
=

[
A B
B A

] [
U V
W X

]
=

[
In 0n,n

0n,n In

]
.

Therefore, we have

AU +BW = In (3)

AV +BX = 0n,n (4)

BU +AW = 0n,n (5)

BV +AX = In. (6)

Since A is nonsingular, we can solve V from (4):

V = −A−1BX.

Together with (6), this implies that

X = (A−BA−1B)−1



in view of nonsingularity of A−BA−1B and thus

V = −A−1B(A−BA−1B)−1.

Similarly, we can solve W from (5) and use it in (3) in order to obtain

W = −A−1B(A−BA−1B)−1 and U = (A−BA−1B)−1.

Therefore, we get

M−1 =

[
(A−BA−1B)−1 −A−1B(A−BA−1B)−1

−A−1B(A−BA−1B)−1 (A−BA−1B)−1

]
.

An alternative approach would be solving U and X from (3) and (6). This results in

U = A−1(In −BW ) (7)

in view of nonsingularity of A. Substituting (7) in (5) yields (A − BA−1B)W = −BA−1. Since
A−BA−1B is nonsingular, we get

W = −(A−BA−1B)−1BA−1. (8)

As such, (7) results in
U = A−1 +A−1B(A−BA−1B)−1BA−1.

Similarly, we can solve X from (6) and use (5) to obtain

V = −(A−BA−1B)−1BA−1

and
X = A−1 +A−1B(A−BA−1B)−1BA−1.

Hence, we obtain

M−1 =

[
A−1 +A−1B(A−BA−1B)−1BA−1 −(A−BA−1B)−1BA−1

−(A−BA−1B)−1BA−1 A−1 +A−1B(A−BA−1B)−1BA−1

]
.



 (8 + 7 + 7 + 8 = 30 pts) Vector spaces

(a) Let E = (v1,v2, . . . ,vn) be an ordered basis for the vector space V .

(i) Show that the vectors v1 + v2,v2 + v3, . . . ,vn−1 + vn,vn form a basis for V .

(ii) Find the transition matrix corresponding to the change of basis from E = (v1,v2, . . . ,vn)
to F = (v1 + v2,v2 + v3, . . . ,vn−1 + vn,vn).

(b) Consider the vector space P4. Let

S = {p ∈ P4 | p(1) = 0 and p′(1) = 0}

where p′(x) denotes the derivative of p(x).

(i) Show that S is a subspace.

(ii) Find a basis for S and determine its dimension.

Required Knowledge: Subspaces, basis, dimension, change of basis.

Solution:

4a(i): The vectors v1 + v2,v2 + v3, . . . ,vn−1 + vn,vn form a basis for V if they span V and are
linearly independent. For the former, let x ∈ V . Since v1,v2, . . . ,vn form a basis, there exist
scalars α1, α2, . . . , αn such that

x = α1v1 + α2v2 + · · ·+ αnvn. (9)

We need to show that there exist scalars β1, β2, . . . , βn such that

x = β1(v1 + v2) + β2(v2 + v3) + · · ·+ βn−1(vn−1 + vn) + βnvn.

This would mean that

x = β1v1 + (β1 + β2)v2 + (β2 + β3)v3 + · · ·+ (βn−1 + βn)vn. (10)

By comparing this with (9), we see that

β1 = α1

β2 = α2 − α1

β3 = α3 − α2 + α1

...

βn = αn − αn−1 +− · · ·+ (−1)(n+1)α1.

Therefore, the vectors v1 + v2,v2 + v3, . . . ,vn−1 + vn,vn span V .
To show that they are linearly independent, let c1, c2, . . . , cn be scalars such that

c1(v1 + v2) + c2(v2 + v3) + · · ·+ cn−1(vn−1 + vn) + cnvn = 0.

Equivalently, we have

c1v1 + (c1 + c2)v2 + (c2 + c3)v3 + · · ·+ (cn−1 + cn)vn = 0

It follows from linear independence of the vectors v1,v2, . . . ,vn that

c1 = 0

c1 + c2 = 0

...

cn−1 + cn = 0.



As such, we see that c1 = c2 = · · · = cn = 0. Therefore, the vectors v1 + v2,v2 + v3, . . . ,vn−1 +
vn,vn are linearly independent.
4a(ii):

We begin with expressing the basis vectors in E as linear combinations of those in F :

v1 = +1 · (v1 + v2)− 1 · (v2 + v3) + 1 · (v3 + v4) + · · ·+ (−1)n · (vn−1 + vn) + (−1)n+1 · vn

v2 = +0 · (v1 + v2) + 1 · (v2 + v3)− 1 · (v3 + v4) + · · ·+ (−1)n−1 · (vn−1 + vn) + (−1)n · vn

...

vn−1 = +0 · (v1 + v2) + 0 · (v2 + v3) + 0 · (v3 + v4) + · · ·+ 1 · (vn−1 + vn)− 1 · vn

vn = +0 · (v1 + v2) + 0 · (v2 + v3) + 0 · (v3 + v4) + · · ·+ 0 · (vn−1 + vn) + 1 · vn.

Therefore, the transition matrix is given by:

T =



1 0 0 · · · 0 0 0
−1 1 0 · · · 0 0 0
1 −1 1 · · · 0 0 0
...

...
...

...
...

...

(−1)n (−1)n−1 (−1)n−2 · · · −1 1 0
(−1)n+1 (−1)n (−1)n−1 · · · 1 −1 1


4b(i): First, we note that the zero polynomial belongs to S. As such, S2 is nonempty.
Let α be a scalar and p ∈ S. Note that

(αp)(1) = αp(1) = 0 and (αp)′(1) = αp′(1) = 0.

This means that αp ∈ S.
Now, let p, q ∈ S. Note that

(p+ q)(1) = p(1) + q(1) = 0 and (p+ q)′(1) = p′(1) + q′(1) = 0.

As such, p+ q ∈ S.
Consequently, S is a subspace.

4b(ii): Let p ∈ P4. Note that if p(x) = ax3 + bx2 + cx + d then p′(x) = 3ax2 + 2bx + c.
Therefore, p ∈ S if and only if

a+ b+ c+ d = 0 and 3a+ 2b+ c = 0.

Solving this linear system, we see that c, d are free variables and a, b are lead variables given by

a = c+ 2d and b = −2c− 3d.

Thus, p ∈ S if and only if

p(x) = (c+ 2d)x3 + (−2c− 3d)x2 + cx+ d = c(x3 − 2x2 + x) + d(2x3 − 3x2 + 1).

for some scalars c and d. This means that the vectors x3−2x2+x, 2x3−3x2+1 span S. Therefore,
they would form a basis for S if they are linearly independent. To verify linear independence, let
α and β be such that

α(x3 − 2x2 + x) + β(2x3 − 3x2 + 1) = 0.

This would mean that

α+ 2β = 0, −2α− 3β = 0, α = 0 and β = 0.

Clearly, the only solution is α = β = 0. As such, the vectors x3−2x2 +x, 2x3−3x2 +1 are linearly
independent and thus form a basis for S.

The dimension of a space is the cardinality of its basis. Therefore, dim(S) = 2.


