Linear Algebra I
18/12/2017, Monday, 15:00 — 17:00

1 (247+34+5+3=20pts) Linear systems of equations

Consider the following linear system of equations in the unknowns z, y, and z:

ar+y+z=1
r+ay+z=1
r+y+az=1

Write down the augmented matrix.

)
b) By performing elementary row operations, put the augmented matrix into row echelon form.
) Determine all values of a so that the system is inconsistent.

)

Determine all values of a so that the system is consistent and find the solution set for such
values of a.

(e) Determine all values of a so that the system has a unique solution.

REQUIRED KNOWLEDGE: Gauss-elimination, row operations, row echelon form, no-
tions of lead/free variables.

SOLUTION:

la: Augmented matrix is given by:

1 111
1 a 111
1 1 all
1b:
= = —Q
a 1 111 %:% 1 a 111 ®®:®®_®® 1 a 1 1
1l a 1]/1 | — | a 1 1]1 0 1—-a®> 1—all—a
1 1 all 1 1 all 0 1—a a—1] 0

We can distinguish two cases depending on the value of a:
Case 1: a=1

In this case, the matrix we obtained in the previous step is already in row echelon form:

1 a 1 1 1 1 11
0 1—-a?2 1—all—a|=]0 0 0|0
0 1—a a-—1 0 0 0 0|0

Case 2: a#1

0 1—a? 1—al|l—a | ——= 0 1—a a-—1 0
0 l—a a-—1 0 0 1—-a® 1—al|l—-a



1 a 1 1 _ 1 1 a 1 1
0 l—-a a-1| 0 @-=@ 0 1 -1 ] 0
0 1-a2 1-a|l—-a 0 1—a? 1-a|l—-a
1 a 1 1 2 1 a 1 1
= + (a 71 .
0 1 -1 0 @=@+( )@ 0 1 -1 0
0 1-a®> 1-a|l—a 0 0 2—a—d’|1-a
Note that a® + a —2 = 0 if and only if a = 1 or a = —2. Since we have already assumed that
a # 1. The term 2 — a — a? can be zero only if @ = —2. This leads to two subcases.
Case 2.1: a#1 and a = —2
In this case, we have
1 a 1 1 _ 1, 1 a 1 |1
0 1 ~1 0 ®©-3-0 01 -1]0
0 0 2-a—-a?>|l1-a 0 0 0|1

Case 2.2: a #1 and a # —2

1 a 1 1] 1 1 ¢ 1 1
01 -1 0 O-rz @ 01 —1] 0
1
0 0 2—a—a? 1—-a | 00 1|43
1c: We have obtained the following row echelon forms:
1 1 1]1]
0 0 00 ifa=1
00 00 ]
1 a 1 [1]
01 =110 ifa#1and a=-2
00 0 1]
1 a 1 1 ]
01 —-1] 0 ifa#1anda# —2.
1
00 1|75
Therefore, we see that the system is inconsistent if and only if @ # 1 and a = —2.

1d: The system is consistent if and only if (a = 1) or (a # 1 and a # —2).

If @ = 1, then z is the lead variable and y, z are free variables. This leads to the general
solution:

[SERISI
|

le: From the previous subproblem, we see that the system has a unique solution if and only if
a#1and a# —2.




2 (20 pts)

Determinants

Find all values of a, b, ¢, d, e, and f such that the matrix

is singular.

L & &
Qo0 o
[T~
e NESUES )

REQUIRED KNOWLEDGE: Determinants, nonsingular matrices.

SOLUTION:

First we compute the determinant.
obtain:

1 1 1 1 1 1 1 1 row operations
a bbb b| [0 b-a b-a b-a @=@-a-@
a ¢ d d| |0 ¢c—a d—a d-—a ®=@-a-@
a c e f 0 c—a e—a f—a @=@-¢-@®
b—a b—a b-—a cofactor expansion
=|lc—a d—a d-—a with respect to
c—a e—a f—a column @)
1 1 1 1 1 1 row operations
=0b-a)|c—a d—a d—a |=(b—-a)|0 d—c d—c @=@ - (c—a)-@
c—a e—a f—a 0 e—c f-—c @=@—(c—a)-@
cofactor expansion
=((b-a) Z:E }i:c with respect to
column (@)
1 1
—0-ad-a| L, L,

By applying row operations and cofactor expansions, we

b—a)(d—c)(f—c—e+c)=(b—a)({d—c)(f —e).

A square matrix is singular if and only if its determinant is zero. Therefore, the matrix given
in this problem is singular if and only ifa =bor c=d or e = f.




3 (10 + 10 = 20 pts) Partitioned matrices

Let A and B be n x n matrices. Suppose that A is nonsingular.
(a) Show that the matrix

v-li

B A

is nonsingular if and only if the matrix A — BA~!B is nonsingular.

(b) Suppose that A — BA™!B is nonsingular and find the inverse of M.

REQUIRED KNOWLEDGE: Partitioned matrices, nonsingular matrices, and inverse.

SOLUTION:

3a: ‘only if’: Suppose that the matrix

v[s 2

is nonsingular. Let z € R™ be such that (A — BA™1B)x = 0. It is enough to show that x = 0,,.

Note that

_ [-AA™'Bz + Bz

K | R sy AR

T B A T

Since M is nonsingular, we see that z = 0. Hence, A — BA~'B is nonsingular.

‘if”: Suppose that A — BA~!'B is nonsingular. Let x,y € R" be such that

] i ] i e

It is enough to show that x = y = 0,,. As such, we have

Az + By =0, (1)
Bz + Ay =0, (2)
Since A is nonsingular, it follows from (1) that z = —A~!By. Then, (2) implies that (A —

BA™'B)x = 0,,. Since A — BA™!B, we see that z = 0,,. Then, (2) yields that Ay = 0,,. Since A
is nonsingular, we get y = 0,,. Consequently, M is nonsingular.

3b: Let U, V,W, X be n x n matrices such that
o v v A Bl|U V| |1, Oun
W X| |B AW X| |Opn In]|’

Therefore, we have

AU + BW = I, (3)
AV + BX =0, (4)
BU + AW =0, (5)
BV + AX =1,. (6)

Since A is nonsingular, we can solve V' from (4):
V =-A"'BX.
Together with (6), this implies that

X=(A-BA'B)!



in view of nonsingularity of A — BA~'B and thus
V=-A"'B(A-BA'B)"..
Similarly, we can solve W from (5) and use it in (3) in order to obtain
W=-A"'B(A-BA'B)™' and U=(A-BA'B)™"
Therefore, we get

(A— BA-'B)~1 —~A"'B(A— BA-'B)"!

Mt =
~A"'B(A-BA™'B)"! (A—-BA™'B)7!

An alternative approach would be solving U and X from (3) and (6). This results in
U=A"Y(I, - BW) (7)

in view of nonsingularity of A. Substituting (7) in (5) yields (A — BA=!B)W = —BA~!. Since
A — BA™!'B is nonsingular, we get

W=—(A-BA'B)"'BA™L. (8)

As such, (7) results in
U=A"'+A"'"B(A-BA'B)"'BA™".

Similarly, we can solve X from (6) and use (5) to obtain
V=—(A-BA'B)"'BA™!

and
X=A"1'"+A"'B(A-BA™'B)"'BA™L.

Hence, we obtain

-l [AT AT B(A- BAT' BT BAT —(A—BA'B)"'BA™!
- —(A—-BA"'B)"'BA™! A7l + A7'B(A—- BAT'B)"'BATY| "




4 (8474748 =30 pts) Vector spaces

(a) Let E = (v1,v2,...,v,) be an ordered basis for the vector space V.
(i) Show that the vectors vy + va,v2 + v3,...,Vp—1 + Uy, v, form a basis for V.
(ii) Find the transition matrix corresponding to the change of basis from E = (v, v, ..., v,)
to F' = (v1 +v2,v2 + v3,...,Vp_1 + Upn, Up).

(b) Consider the vector space P;. Let
S={p € Py|p(1) =0 and p'(1) = 0}
where p’(z) denotes the derivative of p(z).

(i) Show that S is a subspace.

(ii) Find a basis for S and determine its dimension.

REQUIRED KNOWLEDGE: Subspaces, basis, dimension, change of basis.

SOLUTION:

4a(i): The vectors vq + v2, V3 + V3, ...,Vp_1 + Uy, U, form a basis for V' if they span V and are
linearly independent. For the former, let @ € V. Since vy, vs,...,v, form a basis, there exist
scalars aq, s, ..., a, such that

T = U + QoUy + -+ apUp. (9)
We need to show that there exist scalars 1, fa, ..., 8, such that
x = f1(vy +v2) + Bo(va +v3) + -+ Bu1 (Va1 + V) + Brvn.
This would mean that
x = frv1 + (B1 + B2)vz + (B2 + B3)vs + - + (Bu-1 + Bu)vn. (10)
By comparing this with (9), we see that

B1=a
B2 = s —ay

B3 =a3 —as+ oy

Bn =0 —Qp_1+—-+ (_1)(n+1)a1.

Therefore, the vectors v + vy, v + v3,...,Vy_1 + vy, v, span V.
To show that they are linearly independent, let ci,co, ..., ¢, be scalars such that

Cl('Ul + 'UQ) + 02('02 + 'US) + -+ Cn—l(vn—l + Un) + cpv, = 0.
Equivalently, we have

cv1 + (1 + e2)ve + (ca +es)vs+ -+ (ep—1 + ¢cn)v, =0

It follows from linear independence of the vectors vy, vs, ..., v, that
c1 = 0
C1 + Cy = O

Cp_1+c, =0.



As such, we see that ¢; = ¢co = - -+ = ¢, = 0. Therefore, the vectors vi + vs,vs + v3,...,0,_1 +
vV, U, are linearly independent.
4a(ii):
We begin with expressing the basis vectors in E as linear combinations of those in F":
vi =41 (v +w2) =1 (v +v3) + 1 (v3+va) + -+ (1) (Va1 +0,) + (1) 0y
ve=+0 (v +va)+1-(vadw3)—1-(v3+vy)+---+ (D" (v 1 +v,)+ (=1)"-v,

Vpo1 =40 (v1 +v2) +0-(va+v3)+0-(v3+vg)+---+1:(vy_1+v,)—1 v,
Uy =40 (v1 +v2) +0- (va+v3) +0-(v3+vg)+--4+0- (V1 +v,) +1 vy

Therefore, the transition matrix is given by:

i 1 0 0 -0 0 07
-1 1 0 - 0 0 0
1 -1 1 -0 0 0

T =
(D" DT DT <110
O N G e N I

4b(i): First, we note that the zero polynomial belongs to S. As such, S is nonempty.
Let a be a scalar and p € S. Note that

(ap)(1) = ap(1) = 0 and (ap)’(1) = ap/(1) = 0.

This means that ap € S.
Now, let p,q € S. Note that

(p+q)(1) =p(1) +q(1) =0and (p+q)'(1) =p'(1) +4¢'(1) = 0.

Assuch,p+q€S.

Consequently, S is a subspace.

4b(ii): Let p € P;. Note that if p(z) = az® + bx? + cx + d then p/'(z) = 3az? + 2bx + c.
Therefore, p € S if and only if

a+b+c+d=0 and 3a+2b+c=0.
Solving this linear system, we see that ¢, d are free variables and a, b are lead variables given by
a=c+2d and b= -—2c—3d.
Thus, p € S if and only if
p(z) = (c+2d)z® + (—2¢ — 3d)x* + cx + d = c(2® — 22° + ) + d(22° — 322 + 1).

for some scalars ¢ and d. This means that the vectors 2 — 22 4z, 222 — 322 41 span S. Therefore,
they would form a basis for S if they are linearly independent. To verify linear independence, let
a and 3 be such that

a(z® — 222 +2) + B(22® — 322 +1) = 0.

This would mean that
a+268=0, —2a—-38=0, a=0 and B =0.

Clearly, the only solution is & = 3 = 0. As such, the vectors 23 — 222 +x, 223 — 322 + 1 are linearly
independent and thus form a basis for S.
The dimension of a space is the cardinality of its basis. Therefore, dim(S) = 2.




